Почему лучше начинать с микросхемы таймера NE555
Если вы хотите поближе познакомиться с таймером. Не обязательно этим. Понять что это вообще такое. Где и как его используют. То обязательно я вам рекомендую начать с очень популярного и известно во всём мире таймера NE555.
Микросхему NE555 можно спокойно отнести к универсальным таймерам. Который можно применять в различных схемных решениях. Даже довольно нестандартных. Так сказать на все случаи жизни.
Но чаще всего эту микросхему используют как генератор прямоугольных импульсов. Различной частоты и длительности.
И для каких схем не требуется большого количества дополнительных внешних деталей. И это одно из её достоинств. Одно из многих. Благодаря которому она завоевала такую популярность во всём мире.
И эта популярность. Как раз есть поводом чтобы начать именно с этого таймера. Потому что схемных решений на основе NE555 в мире существует огромное количество. Также на многих форумах обсуждается работа этой микросхемы. Плюс к этому существует много различной документации по ней. Переведённые на разные языки включая русский.
Знакомство с микросхемой NE555
Немного истории
Над разработкой этой микросхемы еще в далеком 1970 году занимался американский инженер- схемотехник Ганс Камензинд. А производство этого таймера начала американская фирма Signetics.
Микросхеме TL431 не подвластна времени — 45 лет нет замены — Секрет успеха
Обозначение и цоколёвка
За всё время которое выпускается это микросхема. Она претерпела некоторые внешние изменения. Но это отразилось только на её корпусе. Это такие корпуса как DIP-8, а так же для поверхностного монтажа (SOP-8, SOIC-8).
Но расположение выводов осталось прежним: 1 (земля, минус); 2 (запуск); 3 (выход); 4 (сброс); 5 (контроль); 6 (останов); 7 (разряд); 8 (плюс источника питания). Чтобы легко было найти первый вывод микросхемы. Возле него находится маленькое углубление.
На заре своего выпуска. Эта микросхема существовала и в металлическом корпусе LM555CH
Расположение и назначение выводов
NE555 и её аналоги преимущественно выпускаются в восьмивыводном корпусе типа PDIP8, TSSOP или SOIC. Расположение выводов независимо от корпуса – стандартное. Условное графическое обозначение таймера представляет собой прямоугольник с надписью G1 (для генератора одиночных импульсов) и GN (для мультивибраторов).
- Общий (GND). Первый вывод относительно ключа. Подключается к минусу питания устройства.
- Запуск (TRIG). Подача импульса низкого уровня на вход второго компаратора приводит к запуску и появлению на выходе сигнала высокого уровня, длительность которого зависит от номинала внешних элементов R и С. О возможных вариациях входного сигнала написано в разделе «Одновибратор».
- Выход (OUT). Высокий уровень выходного сигнала равен (Uпит-1,5В), а низкий – около 0,25В. Переключение занимает около 0,1 мкс.
- Сброс (RESET). Данный вход имеет наивысший приоритет и способен управлять работой таймера независимо от напряжения на остальных выводах. Для разрешения запуска необходимо, чтобы на нём присутствовал потенциал более 0,7 вольт. По этой причине его через резистор соединяют с питанием схемы. Появление импульса менее 0,7 вольт запрещает работу NE555.
- Контроль (CTRL). Как видно из внутреннего устройства ИМС он напрямую соединен с делителем напряжения и в отсутствие внешнего воздействия выдаёт 2/3 Uпит. Подавая на CTRL управляющий сигнал, можно получить на выходе модулированный сигнал. В простых схемах он подключается к внешнему конденсатору.
- Останов (THR). Является входом первого компаратора, появление на котором напряжения более 2/3Uпит останавливает работу триггера и переводит выход таймера в низкий уровень. При этом на выводе 2 должен отсутствовать запускающий сигнал, так как TRIG имеет приоритет перед THR (кроме КР1006ВИ1).
- Разряд (DIS). Соединен напрямую с внутренним транзистором, который включен по схеме с общим коллектором. Обычно к переходу коллектор-эмиттер подключают времязадающий конденсатор, который разряжается, пока транзистор находится в открытом состоянии. Реже используется для наращивания нагрузочной способности таймера.
- Питание (VCC). Подключается к плюсу источника питания 4,5–16В.
Аналоги микросхемы NE555
После очень большой популярности. Которую завоевала это микросхема. Её аналоги начали производить уже многие фирмы.
Аналоги полные — AN1555, MC1455, TA7555P, UPC1555, ICM7555, CA555E, UA555TC, M51841P, MC3455P, LM555N
В Советском Союзе аналог этой микросхемы имел название КР1006ВИ1. Но эта микросхема имеет ряд небольших отличий. Которые нужно учитывать при разработке. А также повторении схем. В микросхеме КР1006ВИ1 вход останова (6) имеет приоритет над входом запуска (2). Импортные аналоги других фирм работают идентично оригиналу.
Также в СССР ещё в семидесятых годах. Был разработал аналог этой микросхемы более низким потреблением питания. На полевых транзисторах под названием КР1441ВИ1.
Подборка по другим популярным микросхемам
✅ TL431 — В роли усилителя мощности — Нестандартные схемные решения
✅ Микросхеме TL431 не подвластна времени — 45 лет нет замены — Секрет успеха
✅ PC817 принцип работы и очень простая проверка.
✅ Генератор на оптроне. На примере PC817.
✅ Оптрон PC817 в режиме тиристора или самая простая схема проверки.
✅ PC817 эксперименты с оптопарой
Параметры микросхемы NE555
Ниже представлены предельные эксплуатационные параметры NE555 . Они характерны для большинства её модификаций. Также у некоторых производителей они могут незначительно отличаться между собой. В зависимости от компании-изготовителя
- напряжение источника питания от +4.5 до +18В;
- мощность рассеивания до 600 мВт;
- выходной ток до 200 мА;
- максимальная рабочая частота 500 кГц;
- температура: рабочая от 0 до 70ОС; хранения от -65 до +150ОС.
Документация NE555
Режимы работы NE555
Прецизионный триггер Шмитта
Посмотрим на внутреннюю схему таймера расположенную чуть выше. Если соединить входы THRES и TRIG и использовать их для подачи входного сигнала, то NE555 будет работать в режиме инвертирующего прецизионного триггера Шмитта с RS-триггером на аппаратном уровне. Входное напряжение будет делиться двумя композиторами на три участка. И при переходе входного напряжения через эти участки. Будет происходить срабатывания RS триггера в одну или в другую сторону. Величина гистерезиса определяется встроенным делителем и равна трети напряжения питания.
Одновибратор
Схема работает следующим образом. На вход таймера (2) подают одиночный импульс низкого уровня. Который приводит к переключению микросхемы. И появлению на выходе (3) высокого уровня сигнала. Который длится заданный промежуток времени t=1,1*R*C
Затем таймер переключается обратно в стабильное состояние (низкий уровень на выходе OUTPUT).
Стоит отметить два факта:
- Появление низкого уровня на входе RESET переключает таймер в стабильное состояние и переводит выход OUTPUT на низкий уровень.
- Напряжение источника питания не влияет на длительность импульсов. Чем больше напряжение питания, тем выше скорость заряда времязадающего конденсатора и тем больше амплитуда выходного сигнала.
- Дополнительный импульс, который можно подать на вход после основного, не повлияет на работу таймера, пока не истечет время t.
Также такую схему можно использовать для формирования прямоугольных импульсов правильной формы. А так же для устранения дребезга контакта при переключении. Нужно только подобрать правильно время задающий конденсатор.
Мультивибратор
В режиме мультивибратора. Микросхема ne555 генерирует импульсы прямоугольной формы. На (3) выводе output. Заданной частоты (периода) и также скважности.
Также его отличие от одновибратора состоит в том, что мультивибратор не требует внешнего запускающего импульса. Генерация происходит постоянно.
В формировании повторяющихся импульсов участвуют резисторы R1, R2 и конденсатор С. Время импульса (t1), время паузы(t2), период (T) и частоту (f) рассчитывают по нижеприведенным формулам:
Из данных формул несложно заметить, что время паузы не сможет превысить время импульса, то есть достичь скважности (S=T/t1) более 2 единиц не удастся. Для решения проблемы в схему добавляют диод, катод которого соединяют с выводом 6, а анод с выводом 7.
Схема работает следующим образом. В момент подачи питания конденсатор С1 разряжен, что переводит выход таймера в состояние высокого уровня. Затем С1 начинает заряжаться, набирая ёмкость до верхнего порогового значения 2/3 UПИТ. Достигнув порога ИМС переключается, и на выходе появляется низкий уровень сигнала. Начинается процесс разряда конденсатора (t1), который продолжается до нижнего порогового значения 1/3 UПИТ. По его достижении происходит обратное переключение, и на выходе таймера устанавливается высокий уровень сигнала. В результате схема переходит в автоколебательный режим.
Недостатки NE555 — или ложка дегтя в …
У таймера ne555 есть маленькая особенность. Делитель напряжения которые находятся внутри микросхемы. Он же и задаёт фиксированный верхний и нижний порог срабатывания для двух компараторов. И в связи с тем что делитель напряжения нельзя исключить, а пороговым напряжением нельзя управлять. Это немного сужает область применения этого таймера так как нельзя подключить внешнее управление.
Но более существенная проблема в том что Таймер ne555 выполнен на биполярных транзисторах. Этот недостаток проявляется в момент перехода таймера. А точнее выходного каскада из одного состояния в другое. Каждое переключение сопровождается паразитным сквозным током, который в пике может достигать 400 мА. Что приводит к повышенному энергопотребления микросхемой. А также к увеличению выделения тепла. Проблема частично решается установкой полярного конденсатора ёмкостью до 0,1 мкФ между общим проводом и выводом управления (5). Это повышается стабильность работы таймера. И способствует при запуске устройства.
Так же, для повышения помехоустойчивости. Желательно в цепь питания установить неполярный конденсатор 1 мкФ.
Видео — Секреты и Тонкости поиска неисправных конденсаторов